Abstract

ABSTRACT Estimation of biophysical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC) at high spatiotemporal resolution is important for managing natural and heterogeneous environments. However, accurate estimation of biophysical variables particularly over heterogeneous environments remains a challenge. The objective of the study was to develop locally parameterized grass LAI and CCC empirical models using the Sentinel-2 variables combined with the Stepwise multiple linear regression (SMLR) and Random forest (RF) at the Golden Gate Highlands National Park (GGHNP) and Marakele National Park (MNP) in South Africa. Results showed that in MNP, SMLR yielded better LAI estimation with root mean squared error (RMSE) of 0.67 m2.m−2 and mean adjusted error (MAE) of 0.54, explaining 48% of LAI variability, when bands and indices are combined. In contrast, RF gave better CCC estimation i.e. RMSE and MAE of 17.08 µg.cm−2 and 13.18 respectively, explaining about 40% of CCC variability with Sentinel-2 bands only. In GGHNP, the RF models provided the best estimates of both LAI and CCC compared to SMLR models. Furthermore, the CCC and LAI estimation models of GGHNP showed improved model accuracies when 50% and 75% of the MNP field samples were transferred to the GGHNP models. In contrast, the CCC and LAI estimation models of MNP showed a decline in model performance across all scenarios where the GGHNP field samples were transferred to the MNP models. These findings have significant implications for the development of locally parameterized types of models that can provide improved and consistent site-specific accurate estimates of grass biophysical parameters over heterogeneous environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.