Abstract Recent decades have witnessed rapid urbanization and urban population growth resulting in urban sprawl of cities. This paper analyzes the spatiotemporal dynamics of the urbanization process (using remote sensing and spatial metrics) that has occurred in Delhi, the capital city of India, which is divided into nine districts. The urban patterns and processes within the nine administrative districts of the city based on raw satellite data have been taken into consideration. Area, population, patch, edge, and shape metrics along with Pearson’s chi statistics and Shannon’s entropy have been calculated. Three types of urban patterns exist in the city: 1) highly sprawled districts, namely, West, North, North East, and East; 2) medium sprawled districts, namely, North West, South, and South West; and 3) least sprawled districts—Central and New Delhi. Relative entropy, which scales Shannon’s entropy values from 0 to 1, is calculated for the districts and time spans. Its values are 0.80, 0.92, and 0.50 from 1977 to 1993, 1993 to 2006, and 2006 to 2014, respectively, indicating a high degree of urban sprawl. Parametric and nonparametric correlation tests suggest the existence of associations between built-up density and population density, area-weighted mean patch fractal dimension (AWMPFD) and area-weighted mean shape index (AWMSI), compactness index and edge density, normalized compactness index and number of patches, and AWMPFD and built-up density.
Read full abstract