A number of new wheat samples have been created as a result of hybridization of soft and spelt wheat. Wheat samples were selected with individual family selection among the offspring. The samples were characterized by considerable diversity in morphological and biological characteristics. Forms that differ significantly in plant height were observed among the created offspring. The range of variability on this trait was 55–118 cm. 1561 sample differed positively in the weight of grain from the ear, which significantly exceeded the Star of Ukraine variety and did not differ significantly on this trait from the Podolyanka variety. 1561 sample was positively different in yielding capacity (6,66 t/ha). It was significantly higher than Star of Ukraine variety and not significantly inferior to the Podolyanka variety. In terms of protein and gluten content, the sample 162 containing 44.3 % of gluten and 21.4 % of protein was the best. A significant increase of the weight of 1000 grains relative to both standards was recorded in sample 1710 (59.2 g). We have identified samples in which the earning and ripening were recorded at the level of early ripening soft wheat varieties. Samples 1710 and 1809 have a vegetation period of 280–285 days and their yielding capacity significantly exceeding the Star of Ukraine variety (5.77–6.02 t/ha). A number of new spelt-like forms of wheat were created with the use of remote hybridization of soft and spelt wheat. The obtained forms were analyzed in terms of economic value and found suitable for introduction in breeding improvement schemes. 2. Forms that combine high productivity with high grain quality, in particular sample 1561 containing 36.4 % of gluten, 17.5 % of protein and has yields 6.66 t/ha were selected. 3. Artaplot variety was created with hybridization of soft and spelt wheat; the variety is listed in the State Register for Plant Varieties Suitable for Distribution in Ukraine since 2018. Key words: plant height, protein content, gluten content, yielding capacity, variety.
Read full abstract