The response and energy absorption of novel sandwich beams with combined re-entrant double-arrow auxetic honeycomb (RDAH) cores subjected to three-point bending were studied experimentally and numerically. Two typical sandwich beams loaded at different loading positions were considered. Quasi-static three-point bending experiments were conducted to obtain the failure modes and force–displacement curves. The reliable numerical simulation models were further established based on experimental validations. The results indicate that when the loading roller is located directly above the re-entrant cell, the RDAH core sandwich beam has better load-carrying and energy absorption capacity. Subsequently, the influence of face sheet distribution, cell-wall thickness, impact velocity and cell configuration on the structural response were explored. For the sandwich beams with same total mass, the arrangement where the thickness of the front face sheet is larger than that of the back face sheet is beneficial for improving the load-carrying and energy absorption capacity. In addition, the cell-wall thickness has an influence on the local deformation mode of the sandwich beam, and increasing its value can produce more stable deformation and improve the load-carrying capacity. Increasing impact velocity has a significant influence on the initial deformation but little influence on the final deformation of the sandwich beams. As the impact velocity increases, the total energy absorption of the sandwich beam gradually increases, and the negative Poisson's ratio characteristic of the core still exists. Compared to the traditional re-entrant honeycomb (RH) core sandwich beams, RDAH core sandwich beams have better energy absorption capacity and bending resistance.
Read full abstract