Plant protection drones are fast and efficient application machines that are characterised by high application efficiency and no damage to crops. They are particularly suitable for small areas of farmland and mountainous terrain in regions such as Asia and are currently the dominant insecticide application technology in China. The presence of wind is a prerequisite for the spread and dissemination of airborne diseases and it can directly influence the distance and height of ascent of pathogenic spores. This paper investigates the effect of downwash airflow generated by the flight altitude of a plant protection drone on the horizontal distribution, vertical distribution and ground distribution of powdery mildew spores in wheat. Monitoring the changing dynamics of airborne powdery mildew conidia using spore traps. The test results show that: the number of powdery mildew pathogenic spores is related to various factors such as weather, relative humidity and wind speed; the release of spores is greatly influenced by airflow disturbances but has little effect at the early stages of sporulation; the disease is caused by the accumulation process of pathogenic spores and in the control of powdery mildew in wheat, preventive spraying should be carried out within 2–3 days of the germination of pathogenic spores. The study lays the foundation for further in-depth research on the spread of powdery mildew spores and improved pest control, and provides a basis for scientific and rational spraying and control by agricultural drones.
Read full abstract