Relativistic density functional calculations were carried out on several nickel toroid mercaptides of the general formula [Ni(μ-SR)(2)](n), with the aim to characterize and analyze their stability and magnetic response properties, in order to gain more insights into their stabilization and size-dependent behavior. The Ni-ligand interaction has been studied by means projected density of states and energy decomposition analysis, which denotes its stabilizing character. The graphical representation of the response to an external magnetic field is applied for the very first time taking into account the spin-orbit term. This map allows one to clearly characterize the magnetic behavior inside and in the closeness of the toroid structure showing the prescence of paratropic ring currents inside the Ni(n) ring, and by contrast, diatropic currents confined in each Ni(2)S(2) motif denoting an aromatic behavior (in terms of magnetic criteria). The calculated data suggests that the Ni(2)S(2) moiety can be regarded as a stable constructing block, which can afford several toroid structures of different nuclearities in agreement with that reported in the experimental literature. In addition, the effects of the relativistic treatment over the magnetic response properties on these lighter compounds are denoted by comparing nonrelativistic, scalar relativistic, and scalar plus spin-orbit relativistic treatments, showing their acting, although nonpronunced, role.