Abstract

Electron spin echo envelope modulation (ESEEM) investigations were carried out on samples of the low-pH (lpH) form of vertebrate sulfite oxidase (SO) prepared with (35)Cl- and (37)Cl-enriched buffers, as well as with buffer containing the natural abundance of Cl isotopes. The isotope-related changes observed in the ESEEM spectra provide direct and unequivocal evidence that Cl(-) is located in close proximity to the Mo(V) center of lpH SO. The measured isotropic hyperfine interaction constant of about 4 MHz ((35)Cl) suggests that the Cl(-) ion is either weakly coordinated to Mo(V) at its otherwise vacant axial position, trans to the oxo ligand, or is hydrogen-bonded to the equatorial exchangeable OH ligand. Scalar relativistic all-electron density functional theory (DFT) calculations of the hyperfine and nuclear quadrupole interaction parameters, along with steric and energetic arguments, strongly support the possibility that Cl(-) is hydrogen-bonded to the equatorial OH ligand rather than being directly coordinated to the Mo(V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.