Accurate and timely documentation of vital signs affects all aspects of triage, diagnosis, and management. The adequacy of current patient monitoring practices and the potential to improve on them are poorly understood. To develop measures of fit between documented and actual patient vital signs throughout the visit, as determined from continuous physiologic monitoring, and to compare the performance of actual practice with alternative patient monitoring strategies. This cross-sectional study evaluated 25 751 adult visits to continuously monitored emergency department (ED) beds between August 1, 2020, and December 31, 2021. A series of monitoring strategies for the documentation of vital signs (heart rate [HR], respiratory rate [RR], oxygen saturation by pulse oximetry [Spo2], mean arterial pressure [MAP]) was developed and the strategies' ability to capture physiologic trends and vital sign abnormalities simulated. Strategies included equal spacing of charting events, charting at variable intervals depending on the last observed values, and discrete optimization of charting events. Coverage was defined as the proportion of monitor-derived vital sign measurements (at 1-minute resolution) that fall within the bounds of nursing-charted values over the course of an ED visit (HR ± 5 beats/min, RR ± 3 breaths/min, Spo2 ± 2%, and MAP ± 6 mm Hg). Capture was defined as the documentation of a vital sign abnormality detected by bedside monitor (tachycardia [HR >100 beats/min], bradycardia [HR <60 beats/min], hypotension [MAP <65 mm Hg], and hypoxia [Spo2 <95%]). Median patient age was 60 years (IQR, 43-75 years), and 13 329 visits (51.8%) were by women. Monitored visits had a median of 4 (IQR, 2-5) vital sign charting events per visit. Compared with actual practice, a simple rule, which observes vital signs more frequently if the last observation fell outside the bounds of the previous values, and using the same number of observations as actual practice, produced relative coverage improvements of 31.5% (95% CI, 30.5%-32.5%) for HR, 31.0% (95% CI, 30.0%-32.0%) for MAP, 16.8% (95% CI, 16.0%-17.6%) for RR, and 7.8% (95% CI, 7.3%-8.3%) for Spo2. The same strategy improved capture of abnormalities by 38.9% (95% CI, 26.8%-52.2%) for tachycardia, 38.1% (95% CI, 29.0%-47.9%) for bradycardia, 39.0% (95% CI, 24.2%-55.7%) for hypotension, and 123.1% (95% CI, 110.7%-136.3%) for hypoxia. Analysis of optimal coverage suggested an additional scope for improvement through more sophisticated strategies. In this cross-sectional study, actual documentation of ED vital signs was variable and incomplete, missing important trends and abnormalities. Alternative monitoring strategies may improve on current practice without increasing the overall frequency of patient monitoring.