The impact of cytosine methylation in the central CpG step of two closely related octanucleotide duplexes d(CATCGATG)2 and d(CTTCGAAG)2 was examined by 1H-NMR and 31P-NMR experiments, and a quantitative structural analysis was performed using the NOE-derived distances, the sugar puckers and the epsilon torsion angles. The two starting oligonucleotides displayed a B-DNA conformation with, however, significant local structure differences. Although the methylated oligonucleotides retained their B-DNA conformation, different structural and thermal stability effects were observed. The magnitude of the methylation effects was to depend on the initial conformation of the CpG site, which is governed by the nature of the dinucleotide AT or TT located on the CpG flanks. As an example of sequence dependence, the methylation of CpG entailed larger conformational variation in d(CATCGATG)2 than in d(CTTCGAAG)2. In this study, the 1H and 31P chemical-shift parameters averred as extremely sensitive probes for detecting subtle conformational changes. Finally, our comparative results may aid our understanding of the structural and related biological effects produced by cytosine methylation in DNA.