A number of different receptors are distributed in glutamatergic neurons of the lateral habenula (LHb). These glutamatergic neurons are involved in different neural pathways, which may identify how the LHb regulates various physiological functions. However, the role of dopamine D1 receptor (D1R)-expressing habenular neurons projecting to the ventral tegmental area (VTA) (LHbD1R-VTA) remains not well understood. In the current study, to determine the activity of D1R-expressing neurons in LHb, D1R-Cre mice were used to establish the chronic restraint stress (CRS) depression model. Adeno-associated virus was injected into bilateral LHb in D1R-Cre mice to examine whether optogenetic activation of the LHb D1R-expressing neurons and their projections could induce depression-like behavior. Optical fibers were implanted in the LHb and VTA, respectively. To investigate whether optogenetic inhibition of the LHbD1R-VTA circuit could produce antidepressant-like effects, the adeno-associated virus was injected into the bilateral LHb in the D1R-Cre CRS model, and optical fibers were implanted in the bilateral VTA. The D1R-expressing neuronal activity in the LHb was increased in the CRS depression model. Optogenetic activation of the D1R-expressing neurons in LHb induced behavioral despair and anhedonia, which could also be induced by activation of the LHbD1R-VTA axons. Conversely, optogenetic inhibition of the LHbD1R-VTA circuit improved behavioral despair and anhedonia in the CRS depression model. D1R-expressing glutamatergic neurons in the LHb and their projections to the VTA are involved in the occurrence and regulation of depressive-like behavior.
Read full abstract