Abstract

Background: Depression is one of the most common neuropsychiatric disturbances in Parkinson’s disease (PD), but its pathophysiology is not definite. Lines of evidence have indicated that the hippocampus and serotonin 1A (5-HT<sub>1A</sub>) receptors are related to the regulation of depression. Objective:The purpose of the present study was to observe the effect of 5-HT<sub>1A</sub> receptors in the dorsal hippocampus (dHIP) on PD-related depression in rats. Methods: Unilateral 6-hydroxydopamine lesioning of the medial forebrain bundle (MFB) was used to establish the hemiparkinsonian rat model. The effects of intra-dHIP injection of the 5-HT<sub>1A</sub> receptor ­agonist 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) or antagonist WAY-100635 on depressive-like behaviors were observed in sucrose preference and forced swim tests in control and lesioned rats. Monoamine levels including dopamine (DA), 5-HT, and noradrenaline (NA) in depression-related brain regions were determined by a neurochemical method in all groups. Results: Behavioral results showed that MFB lesions induced depressive-like behaviors. Intra-dHIP injection of 8-OH-DPAT produced antidepressant effects, while WAY-100635 induced or increased the depressive-like behaviors in both control and the lesioned rats. Neurochemical results found that intra-dHIP injection of 8-OH-DPAT significantly increased DA and 5-HT levels in the medial prefrontal cortex (mPFC), lateral habenula (LHb), ventral hippocampus and amygdala in the lesioned group and decreased NA levels in the mPFC and LHb in the control group. Moreover, after injection of WAY-100635, NA levels in all these regions of the lesioned group were significantly increased. Conclusions: These findings suggest that hippocampal 5-HT<sub>1A</sub> receptors regulate depression and PD-related depression by neurochemical mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.