The notion of multiplier Hopf monoid in any braided monoidal category is introduced as a multiplier bimonoid whose constituent fusion morphisms are isomorphisms. In the category of vector spaces over the complex numbers, Van Daele's definition of multiplier Hopf algebra is re-obtained. It is shown that the key features of multiplier Hopf algebras (over fields) remain valid in this more general context. Namely, for a multiplier Hopf monoid A, the existence of a unique antipode is proved --- in an appropriate, multiplier-valued sense --- which is shown to be a morphism of multiplier bimonoids from a twisted version of A to A. For a regular multiplier Hopf monoid (whose twisted versions are multiplier Hopf monoids as well) the antipode is proved to factorize through a proper automorphism of the object A. Under mild further assumptions, duals in the base category are shown to lift to the monoidal categories of modules and of comodules over a regular multiplier Hopf monoid. Finally, the so-called Fundamental Theorem of Hopf modules is proved --- which states an equivalence between the base category and the category of Hopf modules over a multiplier Hopf monoid.
Read full abstract