Lithium batteries play a critical role in modern technological applications, including electric vehicles and portable electronic devices. Ensuring accurate estimation of their remaining useful life is essential to improve system efficiency and reliability. This study focuses on predicting the remaining useful life of lithium batteries using advanced regression methods. Data were collected from lithium battery charge-discharge cycles, encompassing key operational parameters such as voltage, current, and temperature. The analysis employed several regression models, including linear regression, lasso regression, and Ridge regression, to identify relationships between these parameters and battery life. The models were evaluated based on estimation accuracy, with Root Mean Square Error (RMSE) as the primary performance metric. The findings demonstrate that regression methods can effectively capture non-linear relationships between input variables and the remaining useful life, with lasso and Ridge regression showing superior performance in reducing prediction errors. These results underscore the potential of regression-based approaches in providing robust and reliable estimations of battery life. The conclusions highlight the importance of these models for developing predictive battery management systems, which can optimize battery performance and extend their operational lifespan across various applications. This research establishes a solid foundation for future studies on intelligent battery health monitoring and management.
Read full abstract