The lunar poles potentially contain vast quantities of water ice. The water ice is of interest due to its capability to answer scientific questions regarding the Solar System’s water reservoir and its potential as a usable space resource for the creation of a sustainable cislunar economy. The lunar polar water ice exists in extremely harsh conditions under vacuum at temperatures as low as 40 K. Therefore, finding the most effective technique for extracting this water ice is an important aspect of ascertaining the suitability of lunar water as an economically viable space resource. Based on previous work, this study investigates the impact of the different possible arrangements of icy regolith in the lunar polar environment on the suitability of microwave heating as a water extraction technique. Three arrangements of icy regolith analogues were created: permafrost, fine granular, and coarse granular. The samples were created to a mass of 40 g, using the lunar highlands simulant LHS-1, and a target water content of 5 wt. %. The samples were processed in a microwave heating unit using 250 W, 2.45 GHz microwave energy for 60 min. The quantity of water extracted was determined by measuring the sample mass change in real-time during microwave heating and the sample mass before and after heating. The permafrost, fine granular, and coarse granular samples had extraction ratios of 92 %, 83 %, and 97 %, respectively. Possible explanations for the observed variations seen in the mass loss profiles of the respective samples are provided, including explanations for the differences between samples of varying ice morphology (permafrost and granular) and the differences between samples with varying ice surface areas (fine and coarse granular). While differences were observed, microwave heating effectively extracted water in all the samples and remains an effective ISRU technique for extracting water from icy lunar regolith. Differences in the water extraction of different icy regolith could be useful in determining the arrangement of ice in buried samples.
Read full abstract