We described the diagnostic performance of [18F]F-FDG-PET in malignant melanoma by conducting a comprehensive systematic review and meta-analysis of the existing literature. The study was designed following PRISMA-DTA. Original articles with adequate crude data for meta-analytic calculations that evaluated [18F]F-FDG-PET and compared it with a valid reference standard were considered eligible. The pooled measurements were calculated based on the data level (patient/lesion-based). Regarding sub-groups, diagnostic performances were calculated for local, regional and distant involvement. The bivariate model was employed to calculate sensitivity and specificity. The initial search resulted in 6678 studies. Finally, 100 entered the meta-analysis, containing 82 patient-based (10,403 patients) and 32 lesion-based (6188 lesions) datasets. At patient level, overall, [18F]F-FDG-PET had pooled sensitivity and specificity of 81% (95%CI: 73-87%) and 92% (95%CI: 90-94%), respectively. To detect regional lymph node metastasis, the pooled sensitivity and specificity were 56% (95%CI: 40-72%) and 97% (95%CI: 94-99%), respectively. To detect distant metastasis, they were 88% (95%CI: 81-93%) and 94% (95%CI: 91-96%), respectively. At lesion level, [18F]F-FDG-PET had a pooled sensitivity and specificity of 70% (95%CI: 57-80%) and 94% (95%CI: 88-97%), respectively. Thus, [18F]F-FDG-PET is a valuable diagnostic modality for melanoma assessment. It was accurate in various clinical scenarios. However, despite its high specificity, it showed low sensitivity in detecting regional lymph node metastasis and could not replace lymph node biopsy.