Magnetic resonance-guided focused ultrasound (MRgFUS) has brought thalamotomy back to the frontline for essential tremor (ET). As functional organization of human brain strictly follows hierarchical principles which are frequently deficient in neurological diseases, whether additional damage from MRgFUS thalamotomy induces further disruptions of ET functional scaffolds are still controversial. This study was to examine the alteration features of brain functional frameworks following MRgFUS thalamotomy in patients with ET. We retrospectively obtained preoperative (ETpre) and postoperative 6-month (ET6m) data of 30 ET patients underwent MRgFUS thalamotomy from 2018 to 2020. Their archived functional MR images were used to functional gradient comparison. Both supervised pattern learning and stepwise linear regression were conducted to associate gradient features to tremor symptoms with additional neuropathophysiological analysis. MRgFUS thalamotomy relieved 78.19% of hand tremor symptoms and induced vast global framework alteration (ET6m vs. ETpre: Cohen d = − 0.80, P < 0.001). Multiple robust alterations were identified especially in posterior cingulate cortex (ET6m ET6m vs. ETpre ETpre: Cohen d = 0.87, P = 0.048). Compared with matched health controls (HCs), its gradient distances to primary communities were significantly increased in ETpre ETpre patients with anomalous stepwise connectivity (P < 0.05 in ETpre vs. HCs), which were restored after MRgFUS thalamotomy. Both global and regional gradient features could be used for tremor symptom prediction and were linked to neuropathophysiological features of Parkinson disease and oxidative phosphorylation. MRgFUS thalamotomy not only suppress tremor symptoms but also rebalances atypical functional hierarchical architecture of ET patients.