Abstract
Understanding patterns and mechanisms of nurse plant facilitation is important to predict the resilience of arid/semi-arid ecosystems to climate change. We investigate whether water availability and nurse species turnover interact to shape the facilitation pattern of widespread legume shrubs along a large elevation gradient. We also investigate whether leaf δ13C of nurse plants can track the facilitation pattern. We measured the relative interaction index (RII) of the number of species within and outside the canopy of two widespread legume shrub species (Caragana gerardiana and Caragana versicolor) alternatively distributed along a large elevation gradient in the Trans-Himalayas. We also assessed the proportional increase of species richness (ISR) at the community level using the paired plot data. To determine site-specific water availability, we measured the leaf δ13C of nurse shrubs and calculated the Thornthwaite moisture index (MI) for each elevation site. Elevational variations in RII, ISR and δ13C were mainly explained by the MI when the effects of soil nitrogen and plant traits (leaf nitrogen and shrub size) were controlled. Variations in RII and ISR across the two nurse species were explained better by δ13C than by smoothly changing climatic factors along elevation. At the transition zone between the upper limit of C. gerardiana (4100 m) and the lower limit of C. versicolor (4200 m), RII and ISR were much higher in C. versicolor than in C. gerardiana under a similar MI. Such an abrupt increase in facilitation induced by nurse species replacement was well tracked by the variation of δ13C. Water availability and nurse species replacement are crucial to shaping facilitation patterns by legume shrubs along a large elevation gradient in dry mountainous regions, such as the Trans-Himalayas. Turnover in nurse species under global change might significantly alter the pattern of nurse plant facilitation associated with water availability, which can be well tracked by leaf δ13C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.