The extraction, processing and transport of crude oil in the Niger Delta region of Nigeria has long been associated with collateral environmental damage to the largest mangrove ecosystem in Africa. Oil pollution is impacting not only one of the planet’s most ecologically diverse regions but also the health, livelihoods, and social cohesion of the Delta region inhabitants. Quantifying and directly associating localised oil pollution events to specific petrochemical infrastructure is complicated by the difficulty of monitoring such vast and complex terrain, with documented concerns regarding the thoroughness and impartiality of reported oil pollution events. Earth Observation (EO) offers a means to deliver such a monitoring and assessment capability using Normalised Difference Vegetation Index (NDVI) measurements as a proxy for mangrove biomass health. However, the utility of EO can be impacted by persistent cloud cover in such regions. To overcome such challenges here, we present a workflow that leverages EO-derived high-resolution (10 m) synthetic aperture radar data from the Sentinel-1 satellite constellation combined with machine learning to conduct observations of the spatial land cover changes associated with oil pollution-induced mangrove mortality proximal to pipeline networks in a 9000 km2 region of Rivers State located near Port Harcourt. Our analysis identified significant deforestation from 2016–2024, with an estimated mangrove mortality rate of 5644 hectares/year. Using our empirically derived Pipeline Impact Indicator (PII), we mapped the oil pipeline network to 1 km resolution, highlighting specific pipeline locations in need of immediate intervention and restoration, and identified several new pipeline sites showing evidence of significant oil spill damage that have yet to be formally reported. Our findings emphasise the critical need for the continuous and comprehensive monitoring of oil extractive regions using satellite remote sensing to support decision-making and policies to mitigate environmental and societal damage from pipeline oil spills, particularly in ecologically vulnerable regions such as the Niger Delta.
Read full abstract