We consider an electron in a localized potential submitted to a weak external, time-dependent field. In the linear response regime, the response function can be computed using Kubo’s formula. In this paper, we consider the numerical approximation of the response function by means of a truncation to a finite region of space. This is necessarily a singular approximation because of the discreteness of the spectrum of the truncated Hamiltonian, and in practice a regularization (smoothing) has to be used. Our results provide error estimates for the response function past the ionization threshold with respect to both the smoothing parameter and the size of the computational domain.
Read full abstract