Abstract

Two-dimensional organic-inorganic hybrid perovskites (2DHPs) are natural quantum-well-like materials, in which strong quantum and dielectric confinement effects due to the organic spacers give rise to tightly bound excitons with large binding energy. To examine the mutual interactions between the organic spacer cations and the inorganic charge-residing octahedral framework in 2DHPs, here we perform femtosecond pump-probe spectroscopy by direct vibrational pumping of the organic spacers, followed by a visible-to-ultraviolet probe covering their excitonic resonances. Measurements on prototypical lead-bromide based 2DHP compounds, (BA)_{2}PbBr_{4} and (BA)_{2}(FA)Pb_{2}Br_{7} (BA^{+}=butylammonium; FA^{+}=formamidinium), reveal two distinct regimes of the temporal response. The first regime is dominated by a pump-induced transient expansion of the organic spacer layers that reduces the exciton oscillator strength, whereas the second regime arises from pump-induced lattice heating effects primarily associated with a spectral shift of the exciton energy. In addition, vibrational excitation enhances the biexciton emission, which we attribute to a stronger intralayer exciton confinement as well as vibrationally induced exciton detrapping from defect states. Our study provides fundamental insights regarding the impact of organic spacers on excitons in 2DHPs, as well as the excited-state dynamics and vibrational energy dissipation in these structurally diverse materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call