The choice of rational quality criteria for the organization of road traffic in cities is an urgent task for scientists in the field of road transport, as it directly affects the effectiveness of activities in the field of ensuring the safety and comfort of car traffic in urban conditions. Depending on the goals of the analysis, the complexity of the network, and technical capabilities, the quality of traffic management can be assessed by indicators of the economic efficiency of the transport process, the level of accidents, environmental safety, social attractiveness, etc. The modern level of development of geo-information technologies allows for constant monitoring of the vehicle's speed mode. To obtain characteristics of the quality of traffic organization, experimental studies were conducted on a section of the street-road network of the city of Kharkiv, which corresponds to a typical route of personal transport from a remote sleeping area to the central part of the city.
 As a result of data processing of the GPS track, a histogram of the distribution of instantaneous speed and graphs of the car’s movement in the coordinates “time-distance”, “time-speed”, "distance-speed” were built, which allow you to visually assess the mode of movement along the entire route and determine potential "bottlenecks". Such spatio-temporal characteristics as average technical speed, specific time in motion, specific idle time, as well as energy indicators of the quality of traffic management were also calculated: acceleration noise, speed gradient, energy gradient. After dividing the experimental route into separate kilometer sections, changes in the characteristics of the quality of traffic organization, as it approached the city center, were analyzed. On the first half of the route, when moving along the main street, the instability of the speed regime was observed due to stops and idling in the zone of regulated intersections. The presence of a trend towards a decrease in the average technical speed when approaching the city center is explained by an increase in the loading of VDM within the central business part of the city and, as a result, the appearance of additional traffic delays. As we approached the city center, the specific time in motion increased with a slight increase in the specific idle time, and an increase in the speed gradient was also observed with a slight decrease in the energy gradient.
Read full abstract