Abstract

In this work, we find analytical solutions to the Chavy-Waddy–Kolokolnikov equation, a continuum approximation for modeling aggregate formation in bacteria moving toward the light, also known as phototaxis. We used three methods to obtain the solutions, the generalized Kudryashov method, the e−R(ξ)-expansion, and exponential function methods, all of them being very efficient for finding traveling wave-like solutions. Findings can be classified into the case where the nonlinear term can be considered a small perturbation of the linear case and the regime of instability and pattern formation. Standing waves and traveling fronts were also found among the physically interesting cases, in addition to recovering stationary spike-like solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.