The implementation of the suggestion of thin film compression (TFC) allows the newest class of high power, ultrafast laser pulses (typically 20[Formula: see text]fs at near-infrared wavelengths) to be compressed to the limit of a single-cycle laser pulse (2[Formula: see text]fs). Its simplicity and high efficiency, as well as its accessibility to a single-cycle laser pulse, introduce a new regime of laser–plasma interaction that enhances laser acceleration. Single-cycle laser acceleration of ions is a far more efficient and coherent process than the known laser-ion acceleration mechanisms. The TFC-derived single-cycle optical pulse is capable of inducing a single-cycle X-ray laser pulse (with a far shorter pulse length and thus an extremely high intensity) through relativistic compression. The application of such an X-ray pulse leads to the novel regime of laser wakefield acceleration of electrons in the X-ray regime, yielding a prospect of “TeV on a chip.” This possibility of single-cycle X-ray pulses heralds zeptosecond and EW lasers (and zeptoscience). The additional invention of the coherent amplification network (CAN) fiber laser pushes the frontier of high repetition, high efficiency lasers, which are the hallmark of needed applications such as laser-driven LWFA colliders and other, societal applications. CAN addresses the crucial aspect of intense lasers that have traditionally lacked the above properties.
Read full abstract