Engineered bladder tissues, created with autologous bladder cells seeded on biodegradable scaffolds, are being developed for use in patients who need cystoplasty. However, in individuals with organ damage from congenital disorders, infection, irradiation, or cancer, abnormal cells obtained by biopsy from the compromised tissue could potentially contaminate the engineered tissue. Thus, an alternative cell source for construction of the neo-organ would be useful. Although other types of stem cells have been investigated, autologous mesenchymal stem cells (MSCs) are most suitable to use in bladder regeneration. These cells are often used as a cell source for bladder repair in three ways - secreting paracrine factors, recruiting resident cells, and trans-differentiation, inducing MSCs to differentiate into bladder smooth muscle cells and urothelial cells. Adult stem cell populations have been demonstrated in bone marrow, fat, muscle, hair follicles, and amniotic fluid. These cells remain an area of intense study, as their potential for therapy may be applicable to bladder disorders. Recently, we have found stem cells in the urine and the cells are highly expandable, and have self-renewal capacity and paracrine properties. As a novel cell source, urine-derived stem cells (USCs) provide advantages for cell therapy and tissue engineering applications in bladder tissue repair because they originate from the urinary tract system. Importantly, USCs can be obtained via a noninvasive, simple, and low-cost approach and induced with high efficiency to differentiate into bladder cells.