The reforming of CH4 and CO2 into syngas is a highly relevant technology for energy conservation and reducing greenhouse gas emissions, attracting widespread attention in the industry. Inspired by this, this work proposes a general criterion for coke-resistant nickel-based catalysts. By leveraging the high-entropy effect and the lattice distortion of the structure, a high-entropy (NiCaMgZnCo)Al10Ox catalyst was synthesized. The high-entropy oxide exhibited good activity and stability during the DRM reaction over 100 h at 800°C and 650°C, producing only a minimal amount of easily removable carbon deposition. O2-TPO, CO2-TPD, CH4-TPSR, CO2-TPSR, DFT and in situ DRIFT were employed to investigate the mechanism of carbon deposition elimination on the surface of the high-entropy catalyst. Then, a high-entropy strategy for designing coke-resistant catalysts was proposed. This strategy may soon inspire the development of catalysts with enhanced stability and anti-coke deposition properties for various catalytic applications.