Abstract
CH4 has become the most attractive fuel for solid oxide fuel cells due to its wide availability, narrow explosion limit range, low price, and easy storage. Thus, we present the concept of on-cell reforming via SOFC power generation, in which CH4 and CO2 can be converted into H2 and the formed H2 is electrochemically oxidized on a Ni-BZCYYb anode. We modified the porosity and specific surface area of a perovskite reforming catalyst via an optimized electrostatic spinning method, and the prepared LCMN nanofibers, which displayed an ideal LaMnO3-type perovskite structure with a high specific surface area, were imposed on a conventional Ni-BZCYYb anode for on-cell CH4 reforming. Compared to LCMN nanoparticles used as on-cell reforming catalysts, the NF-SOFC showed lower ohmic and polarization resistances, indicating that the porous nanofibers could reduce the resistances of fuel gas transport and charge transport in the anode. Accordingly, the NF-SOFC displayed a maximum power density (MPD) of 781 mW cm-2 and a stable discharge voltage of around 0.62 V for 72 h without coking in the Ni-BZCYYb anode. The present LCMN NF materials and on-cell reforming system demonstrated stability and potential for highly efficient power generation with hydrocarbon fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.