This study investigates a novel approach to enhancing photovoltaic-thermoelectric generator systems by utilizing advanced thermal interface materials in real-world conditions. The research compares two experimental systems under natural air cooling employing different thermal interface materials: one features a pyrolytic graphite sheet, while the other uses conventional thermal grease, alongside a photovoltaic-only system for reference. An Arduino-based data logger accurately monitored key environmental and operational parameters. At peak solar irradiation, the system with the pyrolytic graphite sheet achieved a surface photovoltaic temperature of 39.01 °C, generating 4.90 W and an overall efficiency of 17.95 %. In comparison, the system with thermal grease had a surface photovoltaic temperature of 48.88 °C, generating 4.67 W with an efficiency of 16.87 %, while the photovoltaic-only system reached a surface photovoltaic temperature of 55.37 °C, producing 4.54 W and an efficiency of 16.42 %. The experimental data’s accuracy and reliability were validated against simulations from previous work, revealing error margins between 1.20 % and 3.03 %. These findings underscore the potential of pyrolytic graphite sheets as effective thermal interface materials to significantly enhance the efficiency and power output of photovoltaic-thermoelectric generator systems, offering valuable insights for optimizing renewable energy technologies.
Read full abstract