Reed beds are an alternative technology wastewater treatment system that mimic the biogeochemical processes inherent in natural wetlands. The purpose of this project was to determine the effectiveness of a reed bed sludge treatment system (RBSTS) in southern New England after a six-year period of operation by examining the concentrations of selected metals in the reed bed sludge biomass and by determining the fate of solids and selected nutrients. Parameters assessed in both the reed bed influent and effluent: total suspended solids, biochemical oxygen demand, nitrate-nitrogen and total phosphorus. In addition, the following metals were studied in the reed bed influent, effluent and Phragmites plant tissue and the sludge core biomass: boron, cadmium, chromium, copper, iron, lead, manganese, molybdenum, nickel, and zinc. The removal efficiencies for sludge dewatering, total suspended solids and biochemical oxygen demand were all over 90%. Nitrate and total phosphorus removal rates were 90% and 80% respectively. Overall metals removal efficient was 87%. Copper was the only metal in the sludge biomass that exceeded the standards set by the Massachusetts Department of Environmental Protection for land disposal of sludge. The highest metal concentrations, for the most part, tended to be in the lower tier of the sludge profile. The exception was boron, which was more concentrated in the middle tier of the sludge profile. The data and results presented in this paper support the notion that reed bed sludge treatment systems and the use of reed beds provide an efficient and cost effective alternative for municipal sludge treatment.
Read full abstract