We propose silver oxide as a cost-effective and sustainable alternative to noble metals for the catalytic reduction of nitroaromatics. In the present investigation, we adopt a facile and green synthetic route for the synthesis of silver oxide nanostructures. The prepared nanostructures were found to crystallize in the cuprite phase and exhibit absorbance across the entire visible range of the electromagnetic spectrum. The catalytic potential of the silver oxide was evaluated by following the kinetics of nitrophenol reduction under ambient conditions and is observed to follow pseudo-first order kinetics with the apparent rate constant s-1 at minimum concentration of the catalyst. We attribute the observed catalytic activity to the freshly generated catalytic surface featuring a partially reduced form of silver oxide during reaction. The findings highlight the efficacy of silver oxide in mitigating the environmental pollution originating from the recalcitrant nitroarenes.