In today’s era of rapid technological advancement, unmanned aerial vehicles (UAVs) are transforming sectors such as remote delivery, surveillance, and disaster response. However, challenges related to energy consumption and operational efficiency continue to hinder their broader adoption. To address these issues, this study proposes an integrated system design combining dynamic wireless charging (DWC), intelligent trip planning, and intelligent edge computing (IEC). The proposed system leverages IEC for local data processing to reduce latency and optimize energy management, 6G networks for real-time vehicle-to-infrastructure (V2I) communication, and DWC to enable efficient, on-the-go energy replenishment. Additionally, a dynamic arrival management algorithm is introduced to minimize UAV wait times to enhance operational efficiency. Simulations of this system demonstrated significant improvements: larger UAVs achieved an average charging efficiency of 91.2%, while smaller UAVs achieved 92.75%, with dynamic arrival management reducing wait times by an average of 1.5 min for smaller UAVs and 5.0 min for larger UAVs. These findings underscore the system’s effectiveness in optimizing UAV operations and charging efficiency. This integrated approach offers a scalable framework to enhance UAV capabilities and sets a benchmark for future advancements in operational efficiency and charging technology for urban and environmental applications.
Read full abstract