This paper proposes a test scheduling method for stuck-at faults in a CHAIN interconnect, which is an asynchronous on-chip interconnect architecture, with scan ability. Special data transfer which is permitted only during test, is exploited to realize a more flexible test schedule than that of a conventional approach. Integer linear programming (ILP) models considering such special data transfer are developed according to the types of modules under test in a CHAIN interconnect. The obtained models are processed by using an ILP solver. This framework can not only obtain optimal test schedules but also easily introduce additional constraints such as a test power budget. Experimental results using benchmark circuits show that the proposed method can reduce test application time compared to that achieved by the conventional method.
Read full abstract