Water microdroplets containing 100 μM HAuCl4 have been shown to reduce gold ions into gold nanoparticles spontaneously. It has been suggested that this chemical transformation takes place exclusively at the air-water interface of microdroplets, albeit without mechanistic insights. We compared the fate of several metallic salts in water, methanol, ethanol, and acetonitrile in the bulk phase and microdroplet geometry (sprays). Experiments revealed that when HAuCl4 (or PtCl4) is added to bulk water (or methanol or ethanol), metal NPs appear spontaneously. Over time, the nanoparticles grow, evidenced by the bulk solutions' changing colors. If the bulk solution is sprayed pneumatically and microdroplets are collected, the NP size distribution is not significantly enhanced. We find that the reduction of metal ions is accompanied by the oxidation of water (or alcohols); however, these redox reactions are minimal in acetonitrile. This establishes that the spontaneous reduction of metal ions is (i) a bulk phase phenomenon in water and several non-aqueous solutions, (ii) minimally affected by the air-water interface or the microdroplet geometry, and (iii) is not limited to Au3+ ions and can be explained via the electrochemical series. These results advance our understanding of aquatic chemistry and liquids in general and should be relevant in soil chemistry, biogeochemistry, electrochemistry, and green chemistry.
Read full abstract