Biogas up-gradation is a useful method to control CO2 emission and enhance the green process. The demand for renewable sources is increasing due to the depletion of fossil fuels. Thin-film nanocomposites functionalized with tunable molecular-sieving nanomaterials have been employed to tailor membranes with enhanced permeability and selectivity. In this work, the cellulose nanocrystals as a filler in the polyvinyl alcohol matrix are prepared to achieve high-performance facilitated transport membranes for CO2 capture. Considering the mechanical stability, interfacial compatibility and high moisture uptake of the filler, the main objective of this work was to develop a novel aminated CNC (Am-CNC)/polyvinyl alcohol nanocomposite membrane for biogas upgrading. The hydroxyl groups (O–H) on the reducing end of the cellulose nanocrystals were replaced by amino groups (N–H2). It was discovered through Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) that adding Am-CNCs in PVA membranes shows an increment in the CO2 removal and effectively upgrades the biogas. The effect of change in concentration of Am-CNC and feed pressure was investigated. The results showed that with increasing Am-CNC concentration up to 1.5 wt%, the thickness of the selective membrane layer increased from 0.95 to 1.9 μm with a decrease in the moisture uptake from 85.04 to 58.84%. However, the best CO2 permeance and selectivity were achieved at 0.306 m3/m2.bar.h (STP) and 33.55, respectively. Furthermore, there was a more than two-fold decrease in CO2 permeance and a 27% decrease in the CO2/CH4 selectivity when the feed pressure increased from 5 to 15 bar. It was revealed that PVA/Am-CNC membrane is high performing for the biogas upgradation.