Automated Fabric Defect (FD) detection plays a crucial role in industrial automation within fabric production. Traditionally, the identification of FDs heavily relies on manual assessment, facilitating prompt repairs of minor defects. However, the efficiency of manual recognition diminishes significantly as labor working hours increase. Consequently, there is a pressing need to introduce an automated analysis method for FD recognition to reduce labor costs, minimize errors, and improve fabric quality. Many researchers have devised defect detection systems utilizing Machine Learning (ML) approaches, enabling swift, accurate, and efficient identification of defects. This study presents the Optimal Artificial Neural Network-based Fabric Defect Detection and Classification (OANN-FDDC) technique. The OANN-FDDC technique exploits handcrafted features with a parameter-tuning strategy for effectively detecting the FD process. To obtain this, the OANN-FDDC technique employs CLAHE and Bilateral Filtering (BF) model-based contrast augmentation and noise removal. Besides, the OANN-FDDC technique extracts shape, texture, and color features. For FD detection, the ANN method is utilized. To improve the detection results of the ANN method, the Root Mean Square Propagation (RMSProp) optimization technique is used for the parameter selection process. The simulation outputs of the OANN-FDDC technique were examined on an open fabric image database. The experimental results of the OANN-FDDC technique implied a better outcome than the 96.97% of other recent approaches.