Introduction: Blood cultures play a very important role in the diagnostic algorithm for managing patients with sepsis. Contamination of blood cultures complicate patient care resulting in unnecessary antibiotic use, prolonged hospital stays and more financial burden on the patient. Hence, microbiology laboratories strive to keep contamination rates within <3% as per international standards. Aim: To monitor blood culture contamination rate and reduce contamination using a novel blood culture collection (BCC) bundle. Materials and Methods: A prospective interventional study carried out in a newly set up Microbiology laboratory of a 200 bed tertiary care hospital in North Mumbai. Blood cultures from various clinical areas of the hospital were processed using the BacT/Alert system (BioMereiux, Marcy l'etiole, France). All positive blood cultures were co-related clinically and assigned as pathogens or contaminants. Blood culture contamination rates were actively monitored and BCC bundle was introduced to reduce contamination, which comprised six steps to follow while performing BCC. Active surveillance, audits of the collection process and root cause analysis (RCA) of blood culture contamination were done simultaneously. This was followed by feedback to phlebotomists, nurses and doctors. Periodic and need-based onsite training of health-care workers was also done. Results: Different types of Health Care Workers were performing the procedure. The most common contaminant grown were Gram-positive cocci 159 (25.5%), followed by Gram-negative bacilli 58 (9.32%), and Bacillus spp. 37 (5.95%). It was observed that skin disinfection and incorrect order of draw were two main reasons for the contamination. Over a period of 18 months, BCC bundle implementation reduced the contamination from 17% to 4%. Conclusion: RCA, training, surveillance and audits are essential to improve the quality of blood culture results. Implementation of the BCC bundle benefits both the microbiology laboratory and the clinical teams by decreasing the growth of contaminants and improving the utility of blood culture for better management of patients in sepsis bringing in favorable outcomes.
Read full abstract