AbstractFor the purpose of making hyperbranched polymer (Hb‐Ps)‐based red, green, blue, and white polymer light‐emitting diodes (PLEDs), three Hb‐Ps Hb‐terfluorene (Hb‐TF), Hb‐4,7‐bis(9,9′‐dioctylfluoren‐2‐yl)‐2,1,3‐benzothiodiazole (Hb‐BFBT), and Hb‐4,7‐bis[(9,9′‐dioctylfluoren‐2‐yl)‐thien‐2‐yl]‐2,1,3‐benzothiodiazole (Hb‐BFTBT) were synthesized via [2+2+2] polycyclotrimerization of the corresponding diacetylene‐functionalized monomers. All the synthesized polymers showed excellent thermal stability with degradation temperature higher than 355 °C and glass transition temperatures higher than 50 °C. Photoluminance (PL) and electroluminance (EL) spectra of the polymers indicate that Hb‐TF, Hb‐BFBT, and Hb‐BFTBT are blue‐green, green, and red emitting materials. Maximum brightness of the double‐layer devices of Hb‐TF, Hb‐BFBT, and Hb‐BFTBT with the device configuration of indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/light‐emitting polymer/CsF/Al are 48, 42, and 29 cd/m2; the maximum luminance efficiency of the devices are 0.01, 0.02, and 0.01 cd/A. By using host–guest doped system, saturated red electrophosphorescent devices with a maximum luminance efficiency of 1.61 cd/A were obtained when Hb‐TF was used as a host material doped with Os(fptz)2(PPh2Me2)2 as a guest material. A maximum luminance efficiency of 3.39 cd/A of a red polymer light‐emitting device was also reached when Hb‐BFTBT was used as the guest in the PFO (Poly(9,9‐dioctylfluorene)) host layer. In addition, a series of efficient white devices were, which show low turn‐on voltage (3.5 V) with highest luminance efficiency of 4.98 cd/A, maximum brightness of 1185 cd/m2, and the Commission Internationale de l'Eclairage (CIE) coordinates close to ideal white emission (0.33, 0.33), were prepared by using BFBT as auxiliary dopant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
Read full abstract