The purpose of the present paper is to introduce recursive methods for constructing simple t-designs, s-resolvable t-designs, and large sets of t-designs. The results turn out to be very effective for finding these objects. In particular, they reveal a fundamental property of the considered designs. Consequently, many new infinite series of simple t-designs, t-designs with s-resolutions and large sets of t-designs can be derived from the new constructions. For example, by starting with an important result of Teirlinck stating that for every natural number t and for all N>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N > 1$$\\end{document} there is a large set LS[N](t,t+1,t+N·ℓ(t))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$LS[N](t, t+1, t+N\\cdot \\ell (t))$$\\end{document}, where ℓ(t)=∏i=1tλ(i)·λ∗(i)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell (t)=\\prod _{i=1}^t \\lambda (i)\\cdot \\lambda ^*(i)$$\\end{document}, λ(t)=lcm(tm|m=1,2,…,t)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda (t)=\\mathop {\ extrm{lcm}}(\\left( {\\begin{array}{c}t\\\\ m\\end{array}}\\right) \\,\\vert \\, m=1,2,\\ldots , t)$$\\end{document} and λ∗(t)=lcm(1,2,…,t+1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda ^*(t)=\\mathop {\ extrm{lcm}}(1,2, \\ldots , t+1)$$\\end{document}, we obtain the following statement. If (t+2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(t+2)$$\\end{document} is composite, then there is a large set LS[N](t,t+2,t+1+N·ℓ(t))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$LS[N](t, t+2, t+1+N\\cdot \\ell (t))$$\\end{document} for all N>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N > 1$$\\end{document}. If (t+2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(t+2)$$\\end{document} is prime, then there is an LS[N](t,t+2,t+1+N·ℓ(t))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$LS[N](t, t+2, t+1+N\\cdot \\ell (t))$$\\end{document} for any N with gcd(t+2,N)=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gcd (t+2,N)=1$$\\end{document}.
Read full abstract