Abstract
AbstractThis paper introduces a novel finite control set predictive direct power control method for grid‐connected converters without cost function evaluations. Unlike conventional predictive direct power control, since the proposed method does not use the model parameters, their uncertainties do not cause prediction error and inappropriate voltage vector selection. The method employs a new form of voltage vector selection based on the slopes of active and reactive powers. The slopes are predicted in a manner with a low sensitivity to sampling noise, without updating a look‐up table, and recursive methods. Hence, there are no stagnation and convergence issues. Also, the proposed method avoids startup problems caused by data‐lacking due to directly regulating the active and reactive power by a switching logic. Flexible power oscillations control with balanced sinusoidal grid currents without any signal sequence extraction can also be achieved under this method in unbalanced grid conditions. The proposed method is assessed by both simulation and experimental studies, and its performance is compared with existing robust combined and model predictive control methods. The outcomes highlight the influence of the proposed approach and establish its superiority over the other considered methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.