SummaryThe effects of soil‐structure interaction (SSI) are often studied using two‐dimensional (2D) or axisymmetric three‐dimensional (3D) models to avoid the high cost of the more realistic, fully 3D models, which require 2 to 3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed using impedances for linear in‐plane 2D models with rectangular foundations, embedded in uniform or layered half‐space. They are computed by comparison with results for 3D rectangular foundations with the same vertical cross‐section and different aspect ratios. The structure is represented by a single degree‐of‐freedom oscillator. Correction factors are presented for a range of the model parameters. The results show that in‐plane 2D approximations overestimate the SSI effects, exaggerating the frequency shift, the radiation damping, and the reduction of the peak amplitude. The errors are larger for stiffer, taller, and heavier structures, deeper foundations, and deeper soil layer. For example, for a stiff structure like Millikan library (NS response; length‐to‐width ratio ≈ 1), the error is 6.5% in system frequency, 44% in system damping, and 140% in peak amplitude. The antiplane 2D approximation has an opposite effect on system frequency and the same effect on system damping and peak relative response. Linear response analysis of a case study shows that the NEHRP‐2015 provisions for reduction of base shear force due to SSI may be unsafe for some structures. The presented correction factor diagrams can be used in practical design and other applications.
Read full abstract