Porcine reproductive and respiratory syndrome viruses (PRRSVs) are genetically diverse, and this is due in part to their extensive recombination. Live vaccines are widely used to prevent and control PRRS in China. However, owing to the wide variety of live vaccines, non-standard use, and the wild viruses prevalent on pig farms, new strains, generated via RNA recombination, are continuously emerging. Vaccine strains are also involved in PRRSV recombination, which leads to the emergence of new variants and alterations in virulence and pathogenesis. A recombination-resistant genome was engineered by rewiring the entire transcriptional regulatory sequence (TRS) circuit of the live PRRSV vaccine strain. Theoretically, after clinical application, once the virus recombines with the genome of the epidemic strain, the base pairing between the two sets of TRS circuits should be disrupted, resulting in a fatal genetic trap for the generation of an RNA recombinant progeny virus. Therefore, the remodeled PRRSV TRS mutant generated in this study can serve as a recombination-resistant platform for the rational design of safe PRRS vaccines in the future.
Read full abstract