Fractionation of stable isotopes in precipitation runs through the water cycle, and deuterium excess is a second-order parameter linking water-stable oxygen and hydrogen isotopes. It is strongly influenced by under-cloud evaporation in unsaturated air, especially in arid climates. Based on the improved Stewart model, this study used 670 precipitation stable isotope data and measured meteorological element data from 11 sampling points from January 2018 to September 2019 to verify the existence of sub-cloud secondary evaporation in the Shiyang river basin and quantitatively calculate the intensity of sub-cloud secondary evaporation and its influence on precipitation stable isotopes. The study used the vapor flux and the improved Lagrangian model to track the moisture source of precipitation and analyze the influence of the moisture source of different paths on the stable isotopes of precipitation. Therefore, this study is helpful to understand the evapotranspiration loss mechanism and recharge mechanism of moisture in the watershed. The results showed that there is sub-cloud secondary evaporation in the Shiyang River Basin, and from the seasonal scale, the sub-cloud secondary evaporation is stronger in spring and summer, but weaker in autumn and winter, which makes heavy isotopes enriched in spring and summer and depleted in autumn and winter. From the perspective of spatial distribution, the sub-cloud secondary evaporation is stronger in the midstream and downstream of the Shiyang river, resulting in more enrichment of heavy isotopes. In the vertical direction, the sub-cloud secondary evaporation at 850–700 hPa is the strongest, which enriches the heavy isotope in this layer and reduces the deuterium excess. In addition, the main moisture source of precipitation in the Shiyang River Basin is the westerly air mass, and the mid and high-latitude land sources contribute more moisture to the precipitation. However, the supply of the sea source is very limited, which makes the deuterium excess of precipitation higher and does not show regional consistency and seasonality well.
Read full abstract