There is a remarkable array of new chemical entities in the current antiepileptic drug (AED) development pipeline. In some cases, the compounds were synthesized in an attempt improve upon the activity of marketed AEDs. In other cases, the discovery of antiepileptic potential was largely serendipitous. Entry into the pipeline begins with the demonstration of activity in one or more animal screening models. Results from testing in a panel of such models provide a basis to differentiate agents and may offer clues as to the mechanism. Target activity may then be defined through cell-based studies, often years after the initial identification of activity. Some pipeline compounds are believed to act through conventional targets, whereas others are structurally novel and may act by novel mechanisms. Follow-on agents include the levetiracetam analogs brivaracetam and seletracetam that act as SV2A-ligands; the valproate-like agents valrocemide, valnoctamide, propylisopropyl acetamide, and isovaleramide; the felbamate analog flurofelbamate, a dicarbamate, and the unrelated carbamate RWJ-333369; the oxcarbazepine analog licarbazepine, which probably acts as a use-dependent sodium channel blockers, and its prodrug acetate BIA 2-093; various selective partial benzodiazepine receptor agonists, including ELB139, which is a positive allosteric modulator of α3-containing GABAA receptors. A variety of AEDs that may act through novel targets are also in clinical development: lacosamide, a functionalized amino acid; talampanel, a 2,3-benzodiazepine selective noncompetitive AMPA receptor antagonist; NS1209, a competitive AMPA receptor antagonist; ganaxolone, a neuroactive steroid that acts as a positive modulator of GABAA receptors; retigabine, a KCNQ potassium channel opener with activity as a GABAA receptor positive modulator; the benzanilide KCNQ potassium channel opener ICA-27243 that is more selective than retigabine; and rufinamide, a triazole of unknown mechanism.
Read full abstract