This study presents an integrated supply chain network model for biodiesel and bioethanol production, incorporating torrefaction under uncertain conditions related to the establishment of new facilities. The proposed mixed-integer linear programming model aims to minimize the total cost of the supply chain while maximizing social objectives such as reducing unemployment. To solve the bi-objective model, a three-stage approach is employed: first, uncertain parameters are defuzzified; second, the augmented epsilon-constraint method is applied to generate a set of efficient Pareto-optimal solutions; and third, robust optimization is used to handle real-world uncertainties, such as disruptions caused by natural disasters and sanctions, ensuring feasibility under different scenarios. The study considers various stages of the supply chain, from feedstock cultivation to processing, transportation, and distribution. A real-life case study in Iran is used to evaluate the effectiveness of the proposed model, highlighting that biodiesel and bioethanol supply chains are interrelated, particularly at the cultivation stage, where each crop impacts the other. In this regard, Kermanshah, Isfahan, Chahar Mahal & Bakhtiari, Khorasan North, Kohgiluyeh & Boyer-Ahmad, and Lorestan are identified as the most suitable provinces for second-generation plant cultivation. Additionally, Azerbaijan East is identified as the best location for a bioethanol refinery, while Tehran and Markazi are the optimal choices for biodiesel refineries. This integrated approach offers a novel solution that prevents impractical overlaps in land use, providing a comprehensive, sustainable, and socially beneficial framework for bioenergy supply chain management.
Read full abstract