Radon gas anomalies have been investigated as potential earthquake precursors for many years. In this work, we have studied the possible correlations between radon emissions and the seismic activity rate for a given region to test if the existing correlation may be later used to forecast the occurrence of earthquakes larger than a given magnitude. The Vrancea region (Romania) was chosen as a study area since it is being surveilled by a multidisciplinary real-time monitoring network, and at least seven earthquakes with magnitudes greater than 4.5 Mw have occurred in this area in the period from 2016 to 2020. Our research followed several steps: First, the recorded radon signals were preprocessed (detrended, deseasoned and smoothed). Then, the station’s signals were correlated in order to check which stations are recording radon anomalies due to the same regional tectonic process. On the other hand, the seismic activity rate was computed using the earthquakes in the main catalogue of the region that are able to generate radon emissions and can be registered at several stations. The obtained results indicate a significant correlation between the seismic activity rate and the temporal series of radon anomalies. A temporal lag between the seismic activity rate and the radon anomalies was found, which can be related to the proximity to the epicentre of the main earthquake in each of the studied subperiods. Changes in the regional tectonic stress field could explain why the seismic activity rate and radon anomalies are correlated over time. Further research could focus on obtaining a function to forecast the seismic activity rate using the following as dependent variables: the radon anomalies recorded at several stations, the distance from the stations, and tectonic factors such as the fault system, azimuth, type of soil, etc.
Read full abstract