Historically, the term "artificial intelligence" dates to 1956 when it was first used in a conference at Dartmouth College in the US. Since then, the development of artificial intelligence has in part been shaped by the field of neuroscience. By understanding the human brain, scientists have attempted to build new intelligent machines capable of performing complex tasks akin to humans. Indeed, future research into artificial intelligence will continue to benefit from the study of the human brain. While the development of artificial intelligence algorithms has been fast paced, the actual use of most artificial intelligence (AI) algorithms in biomedical engineering and clinical practice is still markedly below its conceivably broader potentials. This is partly because for any algorithm to be incorporated into existing workflows it has to stand the test of scientific validation, clinical and personal utility, application context, and is equitable as well. In this context, there is much to be gained by combining AI and human intelligence (HI). Harnessing Big Data, computing power and storage capacities, and addressing societal issues emergent from algorithm applications, demand deploying HI in tandem with AI. Very few countries, even economically developed states, lack adequate and critical governance frames to best understand and steer the AI innovation trajectories in health care. Drug discovery and translational pharmaceutical research stand to gain from AI technology provided they are also informed by HI. In this expert review, we analyze the ways in which AI applications are likely to traverse the continuum of life from birth to death, and encompassing not only humans but also all animal, plant, and other living organisms that are increasingly touched by AI. Examples of AI applications include digital health, diagnosis of diseases in newborns, remote monitoring of health by smart devices, real-time Big Data analytics for prompt diagnosis of heart attacks, and facial analysis software with consequences on civil liberties. While we underscore the need for integration of AI and HI, we note that AI technology does not have to replace medical specialists or scientists and rather, is in need of such expert HI. Altogether, AI and HI offer synergy for responsible innovation and veritable prospects for improving health care from prevention to diagnosis to therapeutics while unintended consequences of automation emergent from AI and algorithms should be borne in mind on scientific cultures, work force, and society at large.
Read full abstract