Abstract
The collection of big data from different sources such as the internet of things, social media and search engines has created significant opportunities for business-to-business (B2B) industrial marketing organizations to take an analytical view in developing programmatic marketing approaches for online display advertising. Cleansing, processing and analyzing of such large datasets create challenges for marketing organizations — particularly for real-time decision making and comparative implications. Importantly, there is limited research for such interplays. By utilizing a problematization approach, this paper contributes through the exploration of links between big data, programmatic marketing and real-time processing and relevant decision making for B2B industrial marketing organizations that depend on big data-driven marketing or big data-savvy managers. This exploration subsequently encompasses appropriate big data sources and effective batch and real-time processing linked with structured and unstructured datasets that influence relative processing techniques. Consequently, along with directions for future research, the paper develops interdisciplinary dialogues that overlay computer-engineering frameworks such as Apache Storm and Hadoop within B2B marketing viewpoints and their implications for contemporary marketing practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.