This paper constructs a monthly real-time oil price dataset using backcasting and compares the forecast performance of alternative models of constant and time-varying volatility based on the accuracy of point and density forecasts of real oil prices of both real-time and ex-post revised data. The paper considers Bayesian autoregressive and autoregressive moving average models with respectively, constant volatility and two forms of time-varying volatility: GARCH and stochastic volatility. In addition to the standard time-varying models, more flexible models with volatility in mean and moving average innovations are used to forecast the real price of oil. The results show that time-varying volatility models dominate their counterparts with constant volatility in terms of point forecasting at longer horizons and density forecasting at all horizons. The inclusion of a moving average component provides a substantial improvement in the point and density forecasting performance for both types of time-varying models while stochastic volatility in mean is superfluous for forecasting oil prices.