The presented text deals with research into the influence of the printing layers’ orientation on crack propagation in an AlSi10Mg material specimen, produced by additive technology, using the Direct Metal Laser Sintering (DMLS) method. It is a method based on sintering and melting layers of powder material using a laser beam. The material specimen is presented as a Compact Tension test specimen and is printed in four different defined orientations (topology) of the printing layers—0°, 45°, 90°, and twice 90°. The normalized specimen is loaded cyclically, where the crack length is measured and recorded, and at the same time, the crack growth rate is determined. The evaluation of the experiment shows an apparent influence of the topology, which is essential especially for possible use in the design and technical preparation of the production of real machine parts in industrial practice. Simultaneously with the measurement results, other influencing factors are listed, especially product postprocessing and the measurement method used. The hypothesis of crack propagation using Computer Aided Engineering/Finite Element Method (CAE/FEM) simulation is also stated here based on the achieved results.