Monoclinic BiVO4 is extensively exploited in organic oxidation because of its appropriate valence band and remarkable catalytic activity. BiVO4 quantum dots not only have a high specific surface area and active sites for photocatalytic reactions, but can address the short carrier diffusion path problem. Herein, a Z‐scheme BiVO4 quantum dots/reduced graphene oxide/g‐C3N4 photocatalyst is constructed. Benefiting from the distinct BiVO4 quantum dots and layered g‐C3N4 sheets, the photocatalytic compound possesses a considerable light capture capability and surface area. The established Z‐scheme photocatalytic compound with a suitable electronic band structure and redox potential is integrated with a “synthesis and assembly” method. The sodium oleate surfactant plays an important role in the preparation of uniform BiVO4 quantum dots with a diameter of 3–6 nm. The optimized photocatalytic degradation experiments show that the ciprofloxacin and amoxicillin photocatalytic efficiencies are up to 92.2% and 70.7% in 1 h, respectively. It is shown that the improved photocatalytic activities involve in the prolonged lifetime of photogenerated electrons and fast carrier migration in the compound upon simulated sunlight exposure. Herein, a prospective stage for developing more Z‐scheme heterojunctions with excellent photocatalytic properties for antibiotic wastewater treatment and reproducible solar capture in photochemical energy conversion is offered.
Read full abstract