The use of metal-organic frameworks (MOFs) as catalysts is reported in various industrial applications. In contrast to monometallic MOFs, heterometallic MOFs with mixed organic ligands showed enhanced catalytic properties. The catalytic properties of heterometallic MOFs can be enhanced by generating defects and the synergistic effect between the two heterometals at secondary building units. By using a solvothermal technique, a Cd-Zn heterometallic MOF with a new morphology, [Cd2Zn(DPTTZ)0.5(OBA)3(H2O)(HCOOH)] (IUST-4) [DPTTZ = 2,5-di(4-pyridyl)thiazolo[5,4-d]thiazole, OBA = 4,4'-oxybis(benzoic acid)], was synthesized via a mixed-ligand strategy and characterized by single-crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. X-ray crystallographic analysis showed that IUST-4 is a neutral 3D metal-organic framework crystallized in the monoclinic system with space group C2/c. In this study, the catalytic properties of IUST-4 for the epoxidation of cyclooctene were investigated. IUST-4 was selected as the optimal catalyst for epoxy product production due to its high selectivity and yield. Moreover, the catalytic performance of IUST-4 was maintained despite five recycling cycles without significant degradation. The epoxidation of cyclooctene with IUST-4 has several advantages, including good selectivity, easy recovery, and short-time reaction.